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atoms are present in the alloy to give the needed
accuracy. We may recall that the moments are obtained
from intensities of peaks, not from line position as is
the case for the hyperfine fields. The study of the
ordered alloy of 259, Rh can probably provide the
needed information on the FeIl moment. The task be-
comes considerably easier if one can obtain Fes;Al-type
ordering. As already mentioned, our effort to obtain
this type of ordering was not successful. At present,

PHYSICAL REVIEW

VOLUME 131,

SHIRANE, CHEN, FLINN, AND NATHANS

we are attempting to obtain a single crystal of 25%, Rh
ordered in CsCl type.
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The field dependence of the direct-process spin-lattice relaxation time for rare-earth salts having g,=0
is computed taking into account dipolar coupling between the spins, Comparison is made with the correspond-
ing relaxation time calculated in a modified effective-field approximation, and the presence of terms not
found in the modified effective-field formula is noted. Conditions that must obtain for the effective-field
approximation to be valid are discussed, and a numerical evaluation of the relaxation time for dysprosium
ethyl sulfate is given. Extension of the calculation to salts not having g1=0 is also considered.

I. INTRODUCTION

HE purpose of this note is to extend to one-phonon
processes the calculation of the field dependence
of the spin-lattice relaxation time. Because of the
complexity of the equations we will present explicit
expressions for the relaxation time only for those salts
having g,=0. The formalism used will be that of Van
Vleck,! Gorter,2 and Hebel and Slichter,® while the
notation will be similar to that of Orbach,* who com-
puted the field dependence of the two-phonon process.
Although we restrict our treatment to spin-lattice
relaxation in rare earth salts, the theory is also appli-
cable to the iron group salts, with certain provisos that
are discussed in OI. Mention must also be made of the
work of Bolger® who has considered the field dependence
of the spin-lattice relaxation time from a somewhat
different point of view.

*This work is partially supported by the National Science
Foundation, and the Advanced Research Projects Agency,
Department of Defense.
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II. DERIVATION OF THE GENERAL FORMULA
FOR THE RELAXATION TIME

We begin with the general expression for the
relaxation time,? Ty,

11 za.ﬂ (Ea"'Eﬂ)ZWaﬂ (1)

Ti 2 T.E:
where W,z is the net relaxation rate between the levels
a and 8, which have energies E, and Eg. The spin-lattice
relaxation process takes place via the orbit-lattice
interaction as discussed in detail in OI. We restrict
our attention to Kramers salts, the extension to non-
Kramers salts being straightforward. In the case of
Kramers salts the states |a) and |B) form a time-
conjugate doublet in the absence of perturbations. A
perturbation is, therefore, introduced to remove the
degeneracy of the ground state and to couple in the
excited states so that the relaxation process might take
place. In our problem the perturbation V’ is the sum
of the dipolar and Zeeman interactions. That is,

V'=Vaip+V, 2)
where
V.=, 68H-J0, 3)
and
1
Vap=8A* 3. —(4+B+C+D+E+F), (4)
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with® After rearranging terms we can write Vaip as follows:
A= (J, DT, ®)(1—3 cos®;y) Vaip= kZ ap 07 ()019(R)Vorta(jR)*.  (4')
(4,k),prq

=_1(] D] (& @D J_)(1— ) . . . .
B 1D O+ T OJ_ ) (13 cos'0je) The a,,/* are the appropriate coefficients in the ex-

pansion (5); p, ¢=0, =1; and O:1%(§)=FJ . P. In these

=_3(J . DJ & @ T, Y sind- —igj
¢ B+ DT+ T DT B) sind cosdjpe (5) expressions the symbol 8 denotes the Bohr magneton,

D= —3(J_DJ, W+ T, J_®) sinfy, cosd;ei*it A is the Landé g factor, and H denotes the external
magnetic field. The bracketed indices (4,k) indicate
E=—3(J,.DJ, ®) sin%;e 2 that each pair of ions is to be counted once.
In the presence of V' the state vectors for the jth
= —3(J_DJ_®) sin%f;,e*ieir, spin become
(£3¢| V') (37| V'] )
)= [%‘H’{ [+3g)+ X [£dr)+- - ], (6)
—Agq —A4Ar
(317185 (37| V'] 83)
/= B | g g, Q

q T

where |2=3q;), |E37;), - -, refer to the excited doublets of the jth spin, separated from the ground doublet by
energies Ay, A,, ---, respectively. With these perturbed state vectors one proceeds directly to compute the net
transition rate by methods outlined in OL.” Making the assumption 27>3>(V’) and including only the first excited
doublet, we find

350, 2kT sinkorﬁ

_zrh4pV5 7 kon,-

Wag (| Vor.™|B8) (8] Vor? |’

68.52kT sinkor; ) ) ) )
= (| BAH-JO+ 37 ap*V o7+ 2(jR)* 017 (5)012(k)) | 3954 Vor.? | BXB| Vor 3¢
TpV5ﬁ4Aq2 %7 ko?’ij k.,p,q

X(3gs| GAH-JO+ 37 ar Yo+ (im)*0r ()02 (m)) [a) 1. (8)

m,r,s

In (8) we have introduced the following symbols: 8,6=E.— Eg=energy difference between perturbed doublet
states, p=density, V=velocity of sound, ko=10.5/%V, T=temperature in °K, Vo =orbit-lattice interaction of
ith spin, and 2= Boltzmann’s constant.

The state vectors |«) are state vectors in the space of the entire system of NV spins, and |3g;) is a state vector
in the space of the jth spin.

Letting
Tj=@AH-JO+ 37 a,/Vyte(jm)* 0y ()01 (m)) [3¢:)3¢s| Vor.?, )
and
3kT
=, (10)
T VOhA 2

we obtain for the relaxation time

sinkmj
M X (Ea—Eg)Xa|T:|8)B| st )
1 a,B,i,7 o 35
Tl Za Ea2
where, as before, « and 8 refer to states of the IV spin system. Noting that
(| V'|a)=E, (12)

6 N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. 73, 679 (1948).
7 See, in particular, Sec. 4.
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(11) can be written as

i sinkgr;
F-—: M. Eoﬁ)—l( > ’ J(oz| V'V'T—2V' T,V 4TV V| BB V' V' T =2V TAV T AV V| a))

1 a,B,1,7 kor,-,-

Sinkof’ i3

MZ e[V, LV, 00V, [V, 5t ]
3,7 (27

= . (13)
trv”2

III. SPECIALIZATION g,=0 SALTS

Since the evaluation of (13) becomes prohibitively complex for the general rare earth salt, we will restrict our
attention to salts having g,=0. As all matrix elements of J, and J, within the ground doublet vanish for these
salts, we can write

V.=2_; BAHJ . cosb, (14)

Vdip= Z aooisz"(ij)J,‘i)J,(f), (15)
[C2))

Iy=@AH-JO+3 a: ™Yo (jm)*01(5)7:)|39:X39;| Vor.?. (16)

We have noted that because I'; operates only between ground doublets of spins other than the jth we need keep
only terms containing J,(™ in its expansion (m5% j). Since the trace is independent of representation we can work
in the representation in which the state vectors are products of the state vectors of the individual spins. For
g.=0 salts,

T (a| V'V T 2V TV TV V| BYB| VIV Tt — 2V TAV T V'V | )
a,f
o (o; | T BoXews | Bi)(B:| (B | Tit|ay=0 (1% 7), (17)

the last step following from the observation that ¥’ has only terms in J,® and J,®, while I'; has only terms in
J.® for k# 4.
Remembering that T'; connects only states |«;) and |g;) for which {a;|J.@|a;)=—(B;| J.?|B,), we can write

3 a| V'VT— 2V TV 4TV V! | BXB| VI VT — 2V T AV +TV'V’ | a)=16 tr VTt (18)
a,f

The equation for the direct process spin-lattice relaxation time of g;=0 salts is thus written
1/T1= 16M Zj trV’4I‘jI‘j’f/trV'2. (19)
The evaluation of trV’"*I';T';t is left to the Appendix. We give only the result.
tr VTt = | (3g;] Vor® | 8;) | 2{at cos0(BAH) | {a;| h- T | Lg;)|*+-ab cosO(BAH)* Y | H, P | 24608 (BAH)?
X cos 3! V2 (5F)2(aoo™)? | H P | 24608 cos?0 (BAH)*|{aj| h- TP |30 |2 L Vo0 (jm)? (@o™)?
k,m
+6a8 cos?(BAH ) 3. Y2 (§m)2(a0o™)? | H D [24-12a3(BAH )2 cos?0 3" V(%)
k,m
X V2 jm)ao*aos™Hy O Hn O+ ab (BAH? (5| h-J [ 302 S V20 ()4 (00"
+3a2(BAH) ag | b J9 g |2 B TRV ()2 (300™) (om0 B 0 (8" (a0)| HuD 2
k,m k

+-al? Z/ y2o(jk)4(aoojk)4lgm(j) [2+3a1° Z/ y2o(]'k)2 Vzo(jm)2(dooi")2 (Goo"’”)len(i) 12
k,m k,m,n

+6210 X7 V() V(4 (aos™)? (a0 | H D [*+400 37 V() ¥ 2(j#) (auni™)* (aun™)
k,m k,m
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X [H o Hy, ¥4 H O H 0 412010 S FR(RPY () V(1) (@06 (000 (aog™) H O H O
+4a(BAH)* cos® % a0 Y2 ()i | b JD |3 HL O+ HL DG, h- TP )]
+40®(BAH)? cosf X (a0™Y L (jR)[{ai] h- T | 3g) HL ¥+ Hi D3 g h- T | 0y ]+120°(BAH)? cosd 2 V()

X Y2 (jm) (@) (a0 (| b I | 3g) HnP*+ Hu (s - TP )]y, (20)

where
a=[{j| J ]| = gu/2A, (21)
H D= (0| 37 017 (f)arn™Y 2" (jm)*| 3¢5 (23)

The prime on the summation symbol means that none of the indices that are summed over are equal. One obtains
as well®
trV2=73" o*(BAH)? cos®0+3at 3 (a0e™)2Y (k)% (24)
i ik
If we define
(1/T10) = 1602 (BAH)? cos0M | (3g;] Vor? |8)|2] e 5T | g7

12g,2H*B*A? cos®0kT
B wpVohiA 2

[Ggs| Vor® 18 [ - TP [ 397, (25)
the inverse direct-process spin-lattice relaxation time in the absence of dipolar coupling,® we find, after substituting
(20) and (24) into (19) and rearranging terms,
1 1 2K cos? 12K2K"? 12643 YO (jm)?| H @ |2 (a00™)?
—=—(H? cosQH—I-%KZ)*l(H2 cos?0+— F6K2+ - —
T: T sin%g H? sin%f (BAYH?|{a;| h- T D] %q5) |2
¢12a4 > km YL(GR)Y L (jm)aoe ™ aoe™Hy D H D% 200 Y, Y (jm) (aoe™)* 4Kt Y m YO (jm)*(aeo™™)*
(BA)'H? |{a;| h-J@ | 1g,) |2 (BA)*H? cos®6 (BAH)* cosd sin%
L 3K 6KE 1600 T VI(jm) (ao™)  Ha®|? 126K T V(iR (00| Hu? |2
"HPcos®® | HE cosd sin’d (BA)SH* cos?|(a;| h-J D | 1¢)|? (BAYH* cos?6|{a;] h-JP | g |
808 Y km Y (GE)RV 0 (jm) (aos™*)Pao™ [ H @ H ¥ H O*H,, @]
(BA)°H* cos%0| (o] h- TP | 3¢5} |2
N 1208 3k m,n YR(GRPY L (m) V(1) (@0o™)2a00 @0 H o H »D*
| (81)°H* cos'| (o, | h-T |3, |*
 4a? cosh 3 Vi (jR)aor (s | h- TP | 3g) HW P*+ Hy (s
| (BA| (el B JO 30
8at 3k Vo (78)* (00™)[as | h- IO | 3¢ H ¥+ Hi D (G g, h- I | )]
B (BAVEE cost| ;|- J0 | 1g))|*
| 20 2 km V2GRV (jm) (a0 (@oc™) (e

1

L) le;)]

30| 3g) H 0%+ H 0 (g, | 0 |a,->1> 2
el b T 3452
In anticipation of the discussion given below, we have introduced the symbols
a 2
£=() S lawtpracey, 1)
BA

8 OI1, Eqgs. (16) and (21).
901, Eq. (25).
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and
a?sin?0 Y., | Hp@P |2
K?= i | : (28)
260 s -3 392

An important simplification in the expression for the relaxation time results when we limit consideration to
those salts for which all matrix elements of J, between the ground doublet and the first excited doublet vanish.X
Because only J, and J_ connect the first excited doublet with the ground doublet,

) 3B%A? sinfjm COSOjm_ . . .
H, 0 =— Loteim{a;| T+ D g +eteim(a;| T-P | 3¢5)]. (29)

2r jm3

If there is an absence of a single preferred direction in the plane perpendicular to the crystal axis, as is the case
for cubic and hexagonal symmetries, we observe the following properties of the H.,,?:

2om Hpy DY L(jm)ac™ =3 p Hn @YV L(jm)*(aos™)?,
= Zm Hm(j) Y20(jm)3(000im)3’ (30)
=0.
The expression for the relaxation time is, thus, considerably simplified. We obtain
1 (7 cos?‘f)—f—%KQ)“lr ( )
—= H* cos'0(H? sin’+2K'?)+6H2K? cos®9 (H? sin’0+2K'?)+3K*(H? sin®+2K"
T1  T1oH* cos? sin%0 |_ ) ( : (
1204 (H? cos?0+K2) 3 VP (3m)2(a0s™)2 | Hn@ |2 204 (H? sin?0+2K"2) 3~ Y2 (Gm)* (a0o™)*
(BA)*[{ai | L | 50 |2 (BA)*
16a° 2o Vo (jm)* (aoe™)* | Hn @ |2
i - ] 31
(CINRICHEAE IS

Furthermore, K% is independent of 6 and is given by
o Zm |Hm(j)|2
2(BA)* [{eii| TL | 3g5) |2

Since 1/T o< HY, 1/T: approaches a constant nonzero value in the limit as H approaches zero. This limit is
given by

! 2 r 40K Lo V() (ai™)!  160° T Vi (jm)*(aos)!| H? |2
o 6K4K'2— }
Ty ThoH* cos?d sin®0K2L (BA)* (BA)® || T2 | g |?
1264K2 3" Yzo(]'m)z(aoo"’")zlﬂm(i)lz] (32)
(BA)] 3] T1 | 3} |2 '

The fact that 1/7 is not equal to zero in the absence of an external magnetic field is a direct consequence of the
dipolar coupling of the excited doublet to the ground doublet. In the opposite limit, when the external magnetic
field is much greater than the dipolar field, 1/71~1/T,.

72

(28)

IV. DISCUSSION OF RESULTS

We wish to compare (31) with a corresponding expression for the relaxation time calculated in an approximation
that is a slight modification of the effective-field approximation of Brons and Van Vleck.! In the effective-field
approximation the factors of H arising in the expression for the relaxation time calculated in the absence of dipolar
coupling are averaged over a mean square dipolar field K2, with the distribution ®(H’) given by

(H—H'")?
®(H)dH' = (2rK?)~2 exp( ————————)dH’. (33)
2K?

10This is the case for nearly all g1 =0 salts.
1L F, Brons, thesis, Gronigen, 1938 (unpublished).
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The inverse relaxation time in the absence of dipolar coupling must be interpreted as having a factor of H® in
the numerator (arising from trV"4I',T;') and a factor of H? in the denominator (arising from trV’?). It must also
be noted that the factor of H® in the numerator is the product of a factor of H* arising from the matrix elements
of V, taken within the ground doublet and a factor of H? arising from matrix elements of V, between the ground
doublet and the excited doublet. Since in g,=0 salts only the term §2A2J,J,%®)(1—3 cos®;x) contributes to the
matrix elements of Vgaip within the ground doublet whereas the full set of terms, (5), contributes to the matrix
elements of Vg;, between the ground doublet and the first excited doublet, we argue that the factors of H* and
H* are to be averaged over different mean square dipolar fields, K? and K22 We obtain for the relaxation time in
our modified effective-field approximation,

1 1 (H*cos'9+-6H2K? cos’0+3K*) (H?4-3K"?)

T (39)
T: Tw H* sin% cos?0(H? cos’9+3K?)

In particular, for those salts having no nonzero elements of J, between the ground doublet and the first excited
doublet the modified effective-field approximation yields

Tl_ T1o H* sin?) cos?0(H? cos?9+3K?)

1 1 (H*cos'9+6H2K? cos®9+3K*) (H? sin?0+-2K"?) (35)

The difference between (35) and (34) arises from the fact that in (34) both H,? and H,? are averaged, whereas in
(35) only H,?is averaged.

Our use of the effective-field approximation differs somewhat from that of Van Vleck. We have averaged the
factors H? and H* over different dipolar fields, whereas Van Vleck has averaged them over the same dipolar field.
Our expression for the effective field approximation to the relaxation time is thus not the same as the expression
found in his paper.

Comparison of (35) with (31) indicates that the modified effective-field approximation omits the terms

20t (H? sin?0+2K") 3 m V2 (jm)* (@os™)* (36)
(BA)* ’
1204 (H2 cos0+K*) Y p YV (jm)* (a0s'™)?| Hp?|?

(BA) ;] 71| 3g5) |2

) (37

and
16a8 >, Yzo(jM)4(aoo"m)4l H,® I2

(38)
(BA)*[{a;| .| 3¢5 [2

)

from the exact relaxation time formula. Since each of these terms falls off at least as rapidly as 1/7;,, it is to be
expected that their contribution to the relaxation time will be small. We presently show that for at least one rare
salt this is the case.

Ignoring the contributions of (36), (37), and (38) we see that (35) and (31) are the same, permitting us to
identify the mean square dipolar fields, K* and K’, with the right-hand sides of (27) and (28).

Our results are also to be compared with the results of OII in which it was shown that for the two-phonon process
the exact field dependence of the relaxation time for g, =0 salts was identical to that predicted by Van Vleck on
the basis of the effective-field approximation. This is to be expected since in the two-phonon process relaxation
time, a factor of H?, is averaged over a mean square field as contrasted with the factors of H* and H* that are
averaged in the direct-process relaxation time. As Van Vleck! pointed out, the mean square dipolar field can be
adjusted to yield the correct second moment, but then it does not necessarily yield the correct fourth (or higher)
moments.

In view of the complexity of (26) it is evident that there is little to be gained from an evaluation of the direct-
process relaxation time for rare earth salts not having g,=0. We can say, however, that we would obtain in the
most general expression for the inverse relaxation time terms of the form (sinkerij/kori;) (E«— Eg)Xe|T's| B)B| T'jt] @)
(¢4 7) which take into account correlated relaxation processes and whose importance has been emphasized in OIL.

2 We will presently identify the mean square dipolar fields, K? and K2, introduced here, with the right-hand sides of (27) and (28).
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V. NUMERICAL EVALUATION OF THE_RELAXATION TIME FORMULAS

We now wish to consider the numerical evaluation of (31) and (33) having in mind a particular salt, dysprosium
ethyl sulfate. For this salt the ground doublet and first excited doublet are given by®

0.964|4-9/2)—0.261|F3/2)—0.053| F15/2), (39)
and
0.872|47/2)—0.489|F5/2). (40)

It is seen that only J, and J_ connect the first excited doublet with the ground doublet. Hence,
H,,(D=—10.262A2 sinb;,, COSOjme ™0™/ 8. (41)
In the evaluation of K* and K’* we use the results of Daniels* and Ketelaar'® and find

K2=2.02X10° O¢e?, (42)
and
K'?=1.86X10 Oe?; (43)

so that, in the effective field approximation for dysprosium ethyl sulfate,
1 1 (H*cos'9+1.21X 108H? cos¥+1.23 X 101) (H? sin?9+-3.72X 10%)

T: Ty H* cos? sin?0 (H? cos9+1.01X 105)

where H is measured in Oe.

Consideration of the crystal structure of the ethyl sulfates shows that, of the terms (36), and (37), and (38)
that have been neglected in making the effective field approximation, only the first gives rise to a noticeable
correction to the expression for the relaxation time. Making this correction, we find

11 (H*cos®0+1.21X 10°H? cos0-+1.11 101) (B2 sin®9-+4.77X 104) 5
Ty Tuw H* cost sin® (H? cost9-+1.01 X 105) ’

The size of the correction, 1.11X 10" Oe* instead of 1.23X 10" O, is an indication of the accuracy of the modified
effective-field approximation in this case.
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APPENDIX

We now consider the evaluation of trV’4T,T';!. Since the trace over a single spin operator vanishes, we can
separate the trace terms into two distinct groups,

tr(Va*+6Vai’V 2+ Va )L BAH - TP [3¢5)(54| Vor. @ | 8:)(B;| Vor® | 3¢ (3q;| AH- T @)
+2r 0 km JeOT WY ()Y ot (jm)*ar? as™01 (5) [39:)Gqi| Vor @ |B)Bi| Vor® | 3¢i)(3¢i1 01 (7)), (A1)
and
tr(4V2Vaip+4V.Vain ) {Zrm @™V o (jm)* T, (BAH-TD | 3¢;)(59i| Vor. @ | B:)Bi] Vor? | 3¢5
X (39i|0v ()01 () 3956 Vor? [B)Bi| Vor P | 5¢:)5q;| BAH-JV T}, (A2)
We first evaluate the V.4 term in (Al):
trV AT Tt =at cos®0 (BAH)®| (| h-JD | 3g5) |?] (3gs| Vor® |82
+ab cos'9 (BAH) (X m | Hn®|%) | Gqi| Vor?@|B) |2 (A3)
. J. D. Powell and R. Orbach, Proc. Phys. Soc. (London) 78, 753 (1961).

BM. T.
1 J. M. Daniels, Proc. Phys. Soc. (London) 66, 673 (1953).
16 J. A. A. Ketelaar, Physica 4, 619 (1937).
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where 6 is the angle between the crystal axis and the direction of the external magnetic field. The symbol H,,@ is
defined by (23).
Similarly, we observe

tr6V aiy?V T,T's1=6a® (BAH)* cos| (a;| h- I [3g5) |2 (Bgsl Vor?|85)|* La V(i) (aee™)?
+604(BAH)? co8%0 D k,m,n,p trT ;BT W T, J DV I(jm) ¥ (k) o™ @00™
X 2 Or (DY (1) ard®™ | 3405051 20 Or* ()Y 2 (j2) 00’ |j)
=6a(BAH)* cos®0| (| h- I [3g;) |2 (3gi Vor?|8:)|* s V() (a0s™)?
+6a®(BAH)? cos0| (95| Vor. [ B)|* X Vo (jk)*(@0e™)? | HixP |2
+1205(BAH)? cos0| (3g;| Vor P | B) | Zkm' Y (5R) Y2 (jm)aon™ aos™ H P Hp
+6a8(BAH)? cos®0| (5g5| Vor.® [B) |* Zkm' Yo (7R)* (a0s™)* | Hn@ [ (A4)
The prime on the summation symbol means that none of the indices that are summed over are equal.
Finally, we obtain

trVap!TTit= o (BAH )| (| h- T | 305) 12| (G| Vor @ [B) |2 i mom,p trTs BT, T, T DY 0(R)Y £ ( jm)
XY ()Y 2 (59) 000 @0 ™ 200 G0 P+0 X omompra,t LT BT LW T, (W) T ) J @) ] ,(®
X [(39i| Vor.® | B3} | 2aor™ o™ a0s™a0n(a;| Xr 017 (1) Vo7 (5g)*ar’| $¢5)
X(3gi| 205 01° () Vo (51)*aso’| )
=a®(BAH | (3q;| Vor® |8 2| Gasl h- TP [ a3} |2 T i Y0 (5k)*(@oo™)*
+ 30 (BAH? | (05 - D 30 12| (hgs| Vor 852 s’ VO (GRY 2 jm)* (aar™ (ans™)?
+a[(Gg;| VoL@ B |2 Xk Yo (5R)* (aoe™)*| Hi P [ 24| (3¢5 Vor. P B} Ze.m” Ve (k)
X (@oo™)*| HpD 2436 (5q5| Vor.? [B) |2 Xkm,n” Yo (7R)2V 2 (jm)(@0c™)?(@os’™)* | Ha P |*
+60[(39;| Vor. P |Bi) |2 Lk’ Y2 (jR)Y 2 (jm)* (a00™)?(a0e™)?| Hn P |
+400| (3| Vor® | B2 i’ YOGEPY P (jm) (@00 aoo™ [ Hy@ Hoy ¥+ H O*H,, ]
+120‘m[<’%91'[ VorL® [5}')[2 2 kmn” VL (GR)2Y L (jm) YL (jn) (@00™)ave™aoe™ Hm O H ¥, (AS)
We now evaluate (A2). We obtain for the first term
4V 3V gl 051 = daS (SAH)* cos'] (s Vor 9 B)]? S Vo0(jB)as{ (5| -9 |3) Hyh*
+H PG| - JP]aj)]. (A6)
And we find for the second term
trdV Va1 1= 40 (BAH)? cosf | (3¢;| Vor. @ | B2 L kmynp trT BT, T, J DYV O (GE)Y L(jm) Y o (jn)
X aoo*aomaoe"[ (o - JD |303)(3q;| v 01 (§) Vo7 (jp)*are'? )
(| T 0 ()Y (Gp) ar® | 50 3gs| - TP a3)]
— 48 BAHY? cost| (has| Vor? 812 s V(i) (ans™ L (es] -39 |30 H, %
+H 9D (3q;| h-TD | ) ]H 128 (BAH)? cosh]| (2g;| Vor. D B2 T am’ Y R(jR)2Y 2 (jm)
X (aoi™)2ao™[(a5] h- TP | 3 ) Hn@*+ H D (3gs| h-JD |a)].  (AT)
Summing (A3), (A4), (AS), (A6), and (A7) we immediately obtain (20).



